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Here we’ll derive the equations of motion for copter attitude:
it’s roll, pitch, and yaw or orientation in the sky relative
to an observer on the ground. The X,Y,Z position of the craft
relative to the same observer comprise the other degrees-of
freedom.

We’ll later see how thrust and attitude drive to the X,Y,Z
position, so we need the attitude equations.

Degrees-of-Freedom
Our quad operates with 6 degrees-of-freedom (DOF). Its center-
of-mass (historical term is center-of-gravity CG so this will
be our abbreviation) moves up, down, and sideways relative to
an “inertial reference frame”. It also tilts-and-twists as
described by three attitude angles below. That term, “Inertial
reference frame” just means fixed relative to the environment
our object will be moving: not accelerating.

A  typical  choice  of  reference  frame  for  a  hobby-grade
quadcoptor  is  the,  “take-off”  point  as  the  zero-point
reference, an X-axis pointing north, Y-axis pointing east, and
Z-axis pointing down into the earth via the right-hand-rule
relative to X and Y axis. Point your right arm north with palm
facing east. Curl your fingers towards the east. That is the
right-hand-rule from X-to-Y axis. Extend your thumb. It points
down. That’s your local, “Z” axis. Let’s call this our North-
East-Down (NED) reference frame.
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Reference Frame Assumptions
Our craft will operate within sight of this point. We will
assume a flat earth. As our quadcoptor moves in the sky the CG
position will be determined as an (X,Y,Z) coordinate relative
to the inertial reference frame we chose to pin to the ground:
this  NED  frame.  Technically,  this  point  on  the  earth  is
accelerating  as  the  earth  rotates  but  we’re  assuming  the
entire local flight space is rotating through the day as we
all do here on earth, and we accept this as a fair, “inertial
frame”.

The quadcoptor is not a simple point mass. If you hold a ball-
bearing and move it around you can think of it as a point-
mass, and even though you know a bearing twists and rolls
ignore  that  and  assume  it  doesn’t  rotate  at  all.  The
quadcoptor ball-bearing equivalent places all the mass of the
object at the CG for the purposes of the above (X, Y, Z)
position  relative  the  the  inertial  NED  reference  frame.
However, the tilts and rotations of the quadcoptor define the
orientation, or attitude of the entire assembly in the sky.

For aircraft there are three angular rotations commonly used
to describe orientation:

$\phi = roll$

$\theta = pitch$

$\psi = yaw$

These give us our remaining 3 degrees-of-freedom, for a total
of 6 relative to the earth-fixed NED reference frame:

$(X,\: Y, \: Z,\: \phi,\: \theta,\: \psi)$

The “Body Frame”
Figure 1-2 near the end of the Blakelock Chapter 1 extract



below offers a helpful illustration and legend describing the
body frame, fixed NED frame, and Euler angles. Here’s the
figure. See the PDF below for a detailed description on pages
15 and 16.

The sketch below illustrates a coordinate system fixed to the
body of the quadcopter. The X-Axis is defined to point always
from the CG to the location of the first propeller. The Y-axis
points towards what I label as the fourth propeller axis, and
again, by the right-hand rule, Z is orthogonal to the body X-Y



plane by the right-hand rule.

For now, we make a design assumption that our quadcopter will
be  a  square  cross  configuration  and  not  an  “X-wing”  form
factor. There’s no particular reason other than wanting to
sketch  it  this  way  and  keep  the  diagrams  and  coordinate
reference frames as simple as possible.

ref_frames

Angular Equations of Motion
The Bouabdallah paper refers to the Lagrangian method before
summarizing the equations of motion for the 3 rotational axes
as  described  above.  I  had  some  difficulty  following  the
author’s use of Euler Angles, and I’m not sure the derivations
consistently use these angles within the paper.

Let’s try a Newton-Euler method (Morin p.376) because although
the Lagrangian method is elegantly simple, equating the rate-
of-change of body momentum to applied forces and torques is
straightforward enough.

Recommended Reading
The  following  text  is  a  “classic.”  The  first  edition  was
published in 1965, and the second edition was published in
1991. The first 10 pages of the first chapter concisely lay
out the equations of motion for aircraft. Blakelock’s labeling
and naming of the various body displacements, angles, rates-
of-change  of  position  and  rotation,  linear  and  rotational
momentum, and his description of the Euler angles are helpful.

Retired USAF Colonel Blakelock died in 2015. Click his picture
to read his obituary. I am thankful he left behind this great
book for us.
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It is confusing to think back-and-forth between the “inertial”
frame and the “body frame.” Specifically, the rotations on the
body that an eventual gyro package will measure as (p,q,r)
where…

p = Rotational rate of the body rolling about the body X-axis.

q = Rotational rate of the body pitching about the body Y-
axis.

r = Rotational rate of the body yawing (twisting) about the
body Z-axis

Then there are “Euler Angles,” representing roll, pitch, and
yaw, respectively. These are relative to the fixed frame: the
local NED coordinate system in our case.

Blakelock’s first 10 pages offer a clean and clear description
that will later lead us to the equations in our main reference
for the quadcopter: the Bouabdallah paper.
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Blakelock’s straightforward equations-of-motion derivation is
included here:

blakelock_eom2

Timeout: Angular Momentum Clarification
In a linear system we know the simple statement, “momentum
equals mass times velocity”. We know that linear motion in
three dimensions means that velocity is a vector with x-, y-,
and z-components. Mass for linear momentum is lumped to a
point (our ball-bearing example above). It is a scalar. So, in
a linear system, we’re left with a momentum vector: the mass
times the 3 components of its velocity.

A  rotational  system  in  three  dimensions  will  also  have  a
rotational momentum vector, but in this system, “mass” is
represented as “moment of inertia (I)” and velocity is the
angular velocity of the entire body represented as a three-
coordinate vector or (capital or lowercase may vary, but it is
almost  always  this  Greek  letter,$\omega$  (omega)  that  is
used).

At any instant you can think of this $\vec\omega$ vector as
the axle on which the body spins.

To complicate matters further, what was a scalar mass for the
linear system becomes not simply a vector of inertia about
various axes but a 3×3 matrix!

When we multiply our ‘I’ matrix by our body angular velocity
vector,  we’ll  ultimately  arrive  at  a  3-element  vector  of
angular momentum.

$\vec L\:=\:\b I\vec\omega$

First let’s get more comfortable with the inertia matrix, ‘I’.
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Platform Inertia Matrix
The  Blakelock  text  above  skips  over  the  details  of  the
“Inertia Tensor”: a matrix representing the body’s moment of
inertia. These are the “I” terms. David Morin provides a good
treatment of this topic in Chapter 9 of “Classical Mechanics
with Problems and Solutions.” This Chapter is extracted here
for your reference. The matrix describing a body’s moment of
inertia is covered beginning on P. 376.

MorinCh9

Angular Momentum Changes
Page 393 in Morin above states, “Angular momentum, ‘L’ in the
body frame changes relative to the fixed frame (our NED frame)
by two effects.”

Body coordinates change relative to the body frame.1.
The body frame itself rotates with respect to the fixed2.
frame.

Morin sets  $\vec L_0 = \vec L$ as the momentum vector of the
body at any given instant and imagines painting it on the body
at this instant. The rate-of-change of momentum with respect
to the fixed frame is then…

$\frac{d\vec  L}{dt}=\frac{d(\vec  L  –  \vec  L_0)}{dt}  +
\frac{d\vec  L_0}{dt}$

That first term is the rate-of-change of momentum with respect
to the body frame. This is what someone sitting on a rigid
body would measure:

$\frac{\delta  \vec  L}{\delta  t}  =  \frac{d(\vec  L-  \vec
L_0)}{dt}$

The remaining $ \frac{d\vec L_0}{dt}$ term is the rate-of-
change of the body-fixed momentum vector which is the body
momentum at this instant as defined above. The momentum vector
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in this instant is assumed, “painted” on the body like our
body  axes.  This  instantaneously  “constant”  momentum  is
rotating with respect to the fixed NED frame on the ground at
this instant. This is the $ \frac{d\vec L_0}{dt}$.

Morin reminds us that the fancy sum above that gives us total
change in momentum $\frac{d\vec L}{dt}$ is saying just this:

The total rate of change of angular momentum is the rate of
change of momentum relative to the moving frame PLUS the rate
of change of the moving frame’s momentum with respect to the
fixed frame.

When we have any number of “reference frames” for vectors,
this is how we map any vector from one frame to another. There
is nothing magic or new here, even though the nomenclature
looks fancy.

Body-Fixed  Momentum  Vector  Relative  to
NED Frame
Just as Blakelock on page 13, Morin p. 394 gives us,

$\frac{d\vec L_0}{dt} = \vec\omega \times \vec L$

In Morin chapter 9, you can see the derivation of the “Inertia
tensor,” but it simplifies to a diagonal matrix when we select
the body-frame axis to be the principal axes of the body.

$I = \begin{bmatrix} I_x & 0 & 0\\ 0 & I_y & 0 \\ 0 & 0 & I_z
\end{bmatrix}$

Blakelock doesn’t zero the lower-left and upper-right terms of
the inertial matrix. For a fixed-wing aircraft he maintains a
cross-coupling of the inertia terms associated with roll and
yaw. If you study his figure 1-2 in the book section above you
can make sense of this for an aircraft that does not appear
symmetrical  front-to-back.  However,  our  quadcoptor  is
symmetrical here too. Our inertia matrix simplifies to the
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diagonal matrix above.

This leaves us with $L_i = I_i\omega_i$ for each body axis x,
y, and z. The cross-product $\vec\omega \times \vec L$can be
computed  via  the  determinant  of  the  matrix  below.  The
determinant of a 3-by-3 matrix can be had by augmenting it
with the first two columns as shown and subtracting left-
diagonal products from right-diagonal products.

$\begin{vmatrix} \hat x & \hat y & \hat z\\ w_x & w_y & w_z\\
I_xw_x & I_yw_y & I_zw_z \end{vmatrix} \begin{matrix} \hat x
&\hat y \\ w_x &w_y \\ I_xw_x & I_yw_y \end{matrix}$

Below are the hand calculations for the $\vec\omega \times
\vec L$ cross-product. The black lines represent the, “right
diagonal” products. the red lines represent the left-diagonal
products.

These hand calculations agree with Blakelock equations 1-32
(the central term with the principal axes moments of inertia
in parenthesis). Our rotational rates match Blakelock’s as
follows:

$\\ \omega_x = P \\ \omega_y = Q \\ \omega_z = R$

These are the body rates-of-rotation about the principal axes
of the body: the frame, “painted” on the body. We will soon
get into details for an Inertial measurement unit (IMU) with
gyros  that  will  give  us  (p,q,r)  data  for  our  attitude
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controller.

Rate-of-change of body momentum relative
to  the  body  frame:  $\frac{\delta  \vec
L}{\delta t}$
This is what we would measure if we were sitting still on the
body.

As in Blakelock’s equation 1-32, we will assume the primary-
axis inertia terms are constant. For aircraft, missiles, and
the like, fuel burn changes mass and the distribution of this
mass  within  the  body.  Our  battery-powered  quad  will  not
experience these changes, but it is worthwhile to consider
this effect should we desire to deliver a payload with our
quadrotor. When we drop the load, the mass and moments would
change.

Blakelock indicates that even when this is relevant for fuel-
thirsty  aircraft,  the  above  assumption  works  over  time
intervals much longer than our tens-of-Hz platform control
loop.  We  would  implement  a  “sliding”  controller  or  “gain
scheduling”  system  that  effectively  remodels  our  design
periodically  as  fuel  is  consumed  or  payload  is  released.
Between those slower updates, we would take our moment-of-
intertia, “I” terms as constants.

Thus, we have

$\frac{\delta  \vec  L}{\delta  t}  =  (\dot  PI_x,  \:  \dot
QI_y,\:\dot  RI_z)$

Combining  this  with  the  result  above  our  equations  of
rotational  motion  become…

$\\  \sum_{}^{}  T_x  =  I_x\dot\omega_x\:+\:(I_z-
Iy)\omega_y\omega_z  \\\sum_{}^{}  T_y  =
I_x\dot\omega_y\:+\:(I_x-Iz)\omega_x\omega_z  \\\sum_{}^{}  T_z



= I_x\dot\omega_z\:+\:(I_y-Ix)\omega_x\omega_y$

If  you  assume  no  applied  Torques  T  (natural  rotational
response of the system) you can rearrange the above equations
to match the Bouabdallah paper equation (6). Note that the “I”
subtractions  are  reversed  because,  assuming  zero  applied
torque, we move terms to the other side of the equal sign and
solve for the angular acceleration.

These match when we relate Bouabdallah’s terms to our terms
above as follows…

$\\ \dot \phi = \omega_x \\ \dot \theta = \omega_y \\ \dot
\psi = \omega_z \\ \ddot \phi = \dot \omega_x \\ \ddot \theta
= \dot \omega_y \\ \ddot \psi = \dot \omega_z \\ $

Equations of Linear Motion
The Bouabdallah paper describes a test stand for which various
control strategies are studied. The test stand pins the CG to
a point, constraining it to angular motion only. The paper
does not cover details of linear motion.

Blakelock’s  Chapter  1  above  offers  good  descriptions  for
modeling linear motion. Below is his conclusion. If you look
back at Equation 1.15, you can see how each primary axis
velocity couples into the acceleration of the other axes via
another cross-product. I’m going to leave this here for now
because depending on how we measure position and velocity
relative to the body and/or fixed NED frame, these terms may
or may not be relevant in our design.
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Conclusion
It looks like we have a good handle on the equations of motion
now. We have nomenclature and methods for thinking within the
two reference frames:

The North-East-Down (NED) frame is pinned to the earth
at our take-off point.
The Body frame we can think of is permanently painted
along the primary (x, y, z) axes of our quadcopter.

In the next post, we’ll discuss the applied torque and force
elements of the equations of motion, which are the following



terms in the equations above.

$\\ \sum_{}^{} T_{(x,y,z)}\\ \sum_{}^{} F_{(x,y,z)}\:$

They  are  the  torques  and  forces  that  will  act  on  the
quadcopter. They will include the desired outputs from the
propulsion units, and we can also model external factors such
as wind. We will need a controller design that is robust to
some applied, “disturbances” from wind, for example.


