
Quadrotor  Linear  Quadratic
Regulator (LQR)
[latexpage]

Big gap since the last post where we finally got the state-
space model laid down. It got us to the plant model derived by
Bouabdallah and others in his paper that we’ve used as a guide
from the start.

The goal all along has been not only to analyze and design
candidate controllers for a Quadrotor platform, but to take
forays into applied math, mechanics, and advanced techniques
that we might not need for a camera hover drone but which give
us a chance to stretch our skills.

A typical quadrotor controller decouples the roll, pitch, and
yaw  axes  and  implements  PID  controllers  for  each  axis  as
described in our post from awhile back. We know this works,
and we could jump into Ardupilot source code for say a PixHawk
Cube  and  see  exactly  where  and  how  PID  controllers  are
implemented in source code.

Instead of getting into an implementation let’s push on to
learning  Linear  Quadratic  control  techniques  for  a  Multi-
Input, Multi-Output (MIMO) system.

Why State-Space Model and LQ
Control?
The axis decoupling created Single-Input, Single-output (SISO)
systems out of the Roll, Pitch, and Yaw axes and expects each
axis to work independent of the other via PID control, or more
specifically via a lead compensator as illustrated earlier.
This is an adequate, in most cases a good, robust design so

https://www.mtwallets.com/quadrotor-linear-quadratic-regulator-lqr/
https://www.mtwallets.com/quadrotor-linear-quadratic-regulator-lqr/
https://www.mtwallets.com/quadrotor-control-state-space-model/
http://www.mtwallets.com/wp-content/uploads/2018/03/PID-vs-LQ-Control-Techniques.pdf
https://www.mtwallets.com/quadrotor-roll-pitch-axis-lead-compensation-pid/
https://ardupilot.org/
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk-2.html
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk-2.html


why  am  I  making  this  more  complicated?  It  might  be  bad
engineering practice for a simple camera drone, but as we are
not designing a specific drone just yet, we’re keeping some
extra terms in our design. We’re working on the general case
still: a wide flight envelope away from small-signal hover
response.

Retain  Inertial  Effects:  Axis
Coupling
We’re keeping body inertial effects and propeller gyroscopic
effects in the model. These null-out for roll-, pitch- and
yaw-rates near zero, at which point the state-space A and B
matrices simplify to what are basically 3 independent axes of
control, a situation where our Lead compensator applies. By
not  assuming  these  terms  negligible  we  retain  cross-axis
coupling  and  can’t  treat  the  platform  as  a  set  of  three
independent axes controlled separately from one another.

Comparisons  with  the  Classical
Approach
The classical design method is a bit more intuitive compared
to an LQ optimal approach where we pick relative weights for
state convergence cost and control cost (more on this later).
Recall the insight we gained about plant dynamics and dominant
poles that limit plant response: body and prop moments of
inertia. This is intuitively obvious: large, heavy rig and
slow  prop  response  limits  ability  to  accelerate  body
rotations. We could see these factors in Bode plots and scale
our crossover accordingly. The math and our intuition were
well aligned.

When  we  compute  a  linear  quadratic  gain  matrix  we’ll  be
pumping our intent through the calculus of variations and some
formulae that seem like magic. We’ll compute, “optimal” gains



according  to  a  cost  function.  We’ll  gain  some  insight  by
varying our design parameters but it will be an iterative
process relying on comparative analysis of simulations. It
won’t be as prescriptive as frequency design methods or pole
placement in general.

Also, “optimal” is a bit of a misnomer. An, “optimal” gain is
only so relative to a particular combination of state and
control weights. It’s not, “optimal” in an engineering sense,
only in a mathematical sense for the weighting parameters we
supply.

Starting Point: Full-State Feedback
Regulator
We’ll eventually add roll, pitch, and yaw reference inputs
that a flight controller outer loop will command. These will
be  the  reference  inputs  to  this  inner  platform  attitude
control loop that we are familiar with from our classical
control designs. However, to get started let’s implement a
simple full-state feedback regulator. This will get our design
and simulation tools in order before we introduce reference
inputs.

Below is the system model: full-state feedback to gain K with
state  transition  matrix  A,  and  input  matrix  B.  Another
simplification here is the availability of state measurements
for feedback. We can expect to have measurements from gyros
and accelerometers but these will feed a state estimator that
will  in-turn  supply  the  full-state  feedback  in  our  loop.
However, state estimation is another topic, and it can be
decoupled from the controller design. We’ll cover it later.

When we ultimately add reference inputs and state estimation
to this diagram it will represent a design for implementation,
but in diagram form it will look more intimidating than this
picture. Let’s learn from this first, and build on it.



Full-State Feedback Regulator Block
Diagram

State Definition
Our state vector, ‘x’ contains roll, roll rate, pitch, pitch
rate, yaw, and yaw rate, respectively:

$x=[\phi\;\dot{\phi}\;  \theta  \;\dot{\theta}\;\psi
\;\dot{\psi}]^T$

State  Transition  Matrix  A  and
Command Matrix B



Quadcopter Body Model Sketch



Feedback Gain ‘K’
This is will be an optimal control solution. In this post we
will rely on Matlab’s LQR() function. You’ll see the call in
the Matlab script later but first,

There are States in the Transition
and Control Matrices, Why?
As we recall from the last post and can see above, the A and B
matrices  have  the  three  rate  states  within.  Had  we  not
employed  Bouabdallah’s  trick  to  add  the  rates  as  states
themselves we’d have a product of rates in elements of A. We
eliminated this non-linearity, but we still have states in A.
This is not invariant throughout flight.

Options for dynamic flight when body and
prop dynamics factor-in to A and B..

Model  small-signal  near-hover  control:  zero  the  rate1.
states in the A matrix

This is basically what we did for the classical1.
design methods. It permits decoupling the axes, at
which point this LQR method is less intuitive that
3 decoupled control loops designed as described
previously

Recalculate  Control  Law  K  over  the  flight  envelope:2.
successive linearization.

To the furthest extent this involves taking output1.
rate states as inputs to A and B which are then
inputs  to  a  solution  of  the  Matrix  Ricatti
equation  resulting  in  gain  matrix  K.

Given we’ve already pursued Step #1 in our classical design
approach, let’s push ahead with approach #2

https://www.mtwallets.com/quadrotor-control-state-space-model
https://www.mtwallets.com/quadrotor-roll-pitch-axis-lead-compensation-pid


Successive  Linearization  of  the
Plant Model: A and B Matrices
It would be impractical to recompute feedback gain K as a
function of revised A and B matrices for each new sample
(estimate) for

$[\dot{\phi}\;\dot{\theta}\;\dot{\psi}]$

in our control loop calculations. Our platform control loop
would be solving the matrix Ricatti equation in real-time.

A practical design could be a three-index look-up table that
covers the range of these body axis rotational rates with a
reasonably  granular  step  size.  This  look-up  table  could
contain pre-computed gain matrix K corresponding to the lookup
value indexed by the current

$[\dot{\phi}\;\dot{\theta}\;\dot{\psi}]$.

Let’s assume something along these lines as a design direction
later.

For  the  simulation  that  follows  we  employ  Matlab’s  LQR
function in a loop and we successively compute control gain
matrix K. This allows us to visualize the regulator process
using  the  power  of  the  simulation  tools  before  adding
complications: reference inputs, gain scheduling from look-up
table, and other practical details.

The Control Law: Computing K
Our objective in this exercise is to regulate to zero state-
vector X governed by differential equation

$\dot{x}\;=\;Ax+Bu$

To minimize performance measure



$J=\frac{1}{2}\int_{t_{0}}^{t_{f}}  \left  [
x^{T}(t)\;Q\;x^{T}(t)\:+\:u^{T}\;R\;u^{T}  \right  ]dt$

The performance measure employs two matrices Q and R to weight
the  importance  of  state  convergence  and  control  effort,
respectively. Derivation of the performance measure and how
the plant differential equation and this performance measure
combine to determine an, “optimal” controller gain K given A,
B, Q, and R is a topic for a lengthy foray into optimal
control theory and the calculus of variations.

We’re going to skip this for now and simply use Matlabs lqr()
implementation to meet the stated objective and supply us with
a gain matrix K. By first visualizing through simulations what
we  are  achieving  with  these  methods  we’ll  have  perhaps  a
greater appreciation for the details when we dive into all the
math behind Matlab’s “lqr()” function.

We will see the relative effects of Q and R on regulator
performance. We’ll then move on to the tracking problem when
we are not regulating states to zero, but attempting to track
reference inputs for these states. An outer flight control
loop will supply these references for tracking targets in
flight, for example.

For now let’s accept the performance measure as a result of 
something called the, “second variation” in the calculus of
variations,  employed  for  neighboring-optimal  solutions.  The
final time in our definite integral is also, “free” but we’ll
cover that later

Regulator Simulation
This  basic  regulator  simulation  is  the  foundation  for
complexities we’ll add as we go: tracking reference inputs,
state estimation, and introduction of actuator limits, plant
uncertainties, and disturbances.



For now we want to get the simulation correct by observing
ideal condition regulation to zero from initial conditions on
roll, pitch, and yaw. The video below represents simulation
output from the Matlab script explained below.

Method
The plant is modelled in continuous time. An outer simulation
loop is equivalent to sampling time of a physical system: the
interval on which states would be sensed and/or estimated and
updated commands actuated on an actual system.

In the simulation the system is the plant model A and B as
coefficients  of  the  state  differential  equations.  On  each
iteration of the sampling loop the time interval is further
divided into time steps over which Matlab’s ode45 integrates
the state differential equations.

Each invocation of ode45 takes as initial conditions for the
states the last state output from the last invocation.  Ode45
solves the system below on each invocation for a time vector
that represents the sampling time interval further divided,
computing a state estimate x for each step of that finer
interval.

Command  input,  ‘u’  is  constant  for  each  invocation.  It
represents  operating  on  feedback  from  the  previous  loop,
applying the controller gain K, and issuing an update command,
‘u’ to the plant.

function xd = ssodefunc(t,x,a,b,c,u)
      xd = a*x + b*u;
end

After  each  invocation  the  full  simulation  time  vector  is
appended  with  the  new  timesteps  from  ‘t’  and  the  state
estimates are appended to the full simulation state estimates.



Think of it as though we are kicking a continuous (analog)
system on a time interval with updated commands, ‘u’.  The
analog nature of the plant is represented by the finer time
steps for which Ode45 produces state estimates. All of these
between-sampling-interval state estimates represent the actual
motion of a physical system.

By taking the last Ode45 state solutions from each interval as
initial conditions for which to use as feedback to control
gain K and as initial conditions for the next iteration we are
simulating as though we are, “sampling” (with sensors) on this
interval, as if we only know the last solution from each
invocation of Ode45.

By  plotting  every  finer  interval  it  is  as  though  we  are
observing the behavior of the continuous-time, analog system
under the control of our sampling-and-control system.

Simulation Details
The Matlab M-file below implements the simulation described
above. I use a, “home use” license of MATLAB R2019b with the
Control  Systems  toolbox  and  the  Signal  Processing  toolbox
although you likely need only the former. Mathworks, “home
use” licensing is a great recent offer. For a couple hundred
dollars you can add this to your tool set. In the past I
benefitted from commercial licenses I had access to for work.
It’s great to have a personal license. I highly recommend it.

Matlab Script
The plant parameter values are as derived in an earlier post
where we implemented the classical lead compensators for roll,
pitch, and yaw.

“tstep” is our control loop sampling interval. It has a basis
in the reality of our band-limited mechanical plant. Recall we
closed the classical loops with unity gain crossover at 10Hz.

https://www.mtwallets.com/quadrotor-roll-pitch-axis-lead-compensation-pid


If we imagine tracking a disturbance in this range, how fast
do we need to sample? I remember some old design rules of 5 or
greater times sampling frequency relative to loop crossover,
so this implies we want to be in the neighborhood of 50-100Hz
sampling frequency. This sounds about right.

If you play with this simulation with slow tsteps of ~0.1+
seconds you’ll see the system go unstable. This is because
we’re sampling the plant too slow relative to the inherent
dynamics. On the fast side we would run into computational and
sensor  limits,  but  it’s  reasonable  to  assume  a  50-100Hz
sampling  rate  for  this  platform  control  loop  will  be
achievable  in  hardware.

Below you will see tstep=0.02s representing a 50Hz control
loop. Imagine this would be the rate at which we would sample
sensors, update state estimates, and issue revised commands to
our motors. This might be a bit slow but it’s fine for now.
50-100Hz is likely what a hardware platform will support.
There will be other sampling rates within the system to, for
example, acquire inertial sensor data and filter estimates for
the platform control loop. These may run considerably faster,
and  we  will,  “sample”  the  output  of  these  subsystems  for
estimated at our control loop sampling rate.

Download the M-file
three additional supporting functions to place in same folder
when you run the above script: paintbody.m, paintbody_update.m
and ssodefunc.m

Conclusion
We introduced a simple multi-input, multi-output (MIMO) Linear
Quadratic Regulator design and simulation  here with full-
state feedback. State feedback will ultimately come from a
state estimator: a Kalman filter that will perform sensor

http://www.mtwallets.com/wp-content/uploads/2020/10/state_regulator_sim_basic.m
https://www.mtwallets.com/wp-content/uploads/2021/09/paintbody.m
https://www.mtwallets.com/wp-content/uploads/2021/09/paintbody_update.m
https://www.mtwallets.com/wp-content/uploads/2021/09/ssodefunc.m


fusion  from  our  gyroscopes,  accelerometers,  GNSS  (GPS),
compass, and barometric sensor on a real flight platform.

This state estimation will be a topic all it’s own. We’ll also
later introduce reference inputs for pitch, roll, and yaw so
we can control to setpoints and not simply regulate to zero
values.

Until then, study and play with the m-file above if you can
find yourself a Matlab seat!

 


