
Quadrotor: Simplifications
for, “Classical” Controller
Design
[latexpage]

The last few posts covered each of three dynamic details
separately:

Gyroscopic effect of the rigid body (the entire
quadcopter).
Gyroscopic effect of the spinning propellers.
Propeller thrust and drag effects.

We’re going to use all of this information as we look at
controlling the flight of a quadcopter, but first we’re going
to make some simplifying assumptions so we can get to a,
“classical” controller design around a transfer function.

After we attack the simple model we will try our hand at other
techniques using state-space methods. Starting with a
classical control loop model that neglects gyroscopic effects
and cleanly separates the axes of control will provide a solid
understanding of the physical problem. Then we’ll add-back the
complications and try other design methods.

This first video walks through to the end result. See more
detail below.

In the video I say, “theta” often when I should be saying,
“phi”.

https://www.mtwallets.com/quadrotor-simplifications-for-classical-controller-design/
https://www.mtwallets.com/quadrotor-simplifications-for-classical-controller-design/
https://www.mtwallets.com/quadrotor-simplifications-for-classical-controller-design/

Simplifications
Let’s consider two propellers responsible for rolling the
body, and pin the point of rotation at the balance point, as
illustrated in the sketch here. both the roll and the pitch
axis can be considered as such. We’ll cover yaw later. Here we
are going to simplify the dynamic model in pursuit of a
transfer function from propeller inputs (which produce thrust
F1 and F2 in this sketch), and roll angle output ϕ. We
need to make 3 simplifying assumptions to the model developed
to this point, as described below.

1. Ignore the Gyroscopic effect of
the Rigid Body
Imagine the initial condition is a balanced one: we’re not
amidst drastic changes to the level condition. We want to
consider the response of the simplified model above to slight
disturbances about the balanced condition. We might be
relatively insensitive to the gyroscopic effect of the rigid
body even under more dynamic conditions, but in any case, this
simplification allows us to ignore the rigid-body gyroscopic
effect described here.

2. Ignore Gyroscopic effect of
propellers
Again, if we’re hovering level we are not amidst rate-of-
change of the rotational plane of the propellers, recalling an
earlier post.

https://www.mtwallets.com/quad-coptor-platform-equations-of-motion-dynamic-model/
https://www.mtwallets.com/quadrotor-dynamic-model-propeller-gyroscopic-effect/

3. Neglect the, ‘C’ term in our
propeller speed differential
equation
The above simplification will get us to match the simplified
model in the Bouabdallah paper, but I struggled to match the
author’s reasoning for his final simplification: neglect the,
‘C’ term in the propeller speed equation (red highlights
below).

Challenged to validate, “C too small
comparing to B”…
We need to plug some parameter values in for ‘B’ and ‘C’ to
check Bouabdallah’s claim above. When we do so, the opposite
is revealed: ‘C’ is greater than ‘B’!

The ‘C’ term is not small compared to
‘B’…we need it’s effect to be. How can we
check this?
Simply comparing the magnitude of the B and C parameters for
nominal conditions above doesn’t tell us if we can safely

https://www.mtwallets.com/wp-content/uploads/2018/03/PID-vs-LQ-Control-Techniques.pdf

ignore B or C. We know we can’t ignore our ‘B’ term because
this would zero our drive input! Se we’re stuck with what
looks like a smaller value for B than C

Sensitivity Analysis:
$\frac{d\omega}{dt}$ sensitivity to changes in ‘u’
and ω_0

 This video explains how to rationalize
neglecting the, ‘C’ term and an
additional adjustment to the ‘A’ term
that results.

PDF of the document reviewed in the video
justifying neglecting the ‘C’ term.

V_WSensitivity

Controller Drive Outputs
The Bouabdallah paper equation 10 simplifies the control
inputs by combining the propeller inputs into intuitive
combinations based on what we’ve derived so far. My sign
convention is different with z-down in my case, but I’m
following the lead of this paper to state the control inputs
as…

$\\ U_1=b(\Omega _2^2 – \Omega _4^2) \\ U_2=b(\Omega _1^2 –
\Omega _3^2) \\ U_3=d(\Omega _2^2 + \Omega _4^2-\Omega _1^2 –
\Omega _3^2)\ W =(\Omega _2 + \Omega _4-\Omega _1 – \Omega
_3)$

https://www.mtwallets.com/wp-content/uploads/2018/09/V_WSensitivity.pdf
https://www.mtwallets.com/wp-content/uploads/2018/03/PID-vs-LQ-Control-Techniques.pdf

You can interpret the above as…

U1 = Roll input
U2 = Pitch input
U3 = Yaw Input

W = Propeller gyroscopic effect as a disturbance, “input”. We
are ignoring this, for now.

The control logic is going to request roll, pitch, and yaw
output from the platform as a combination of propeller drive
inputs as above.

Resulting Transfer Function
After accepting the above simplifications and control input
definitions we arrive at a transfer function from motor drive
voltage (the difference of the squared drive voltages denoted
capital ‘V’) and roll output. For a symmetrical quadcopter,
this transfer function applies to the pitch axis as well.
We’ll cover yaw later (it’s just a bit different).

$\frac{\phi(s)}{V(s)}=\frac{K_g}{s^2(s+A)^2}$

With plant gain

$K_g=\frac{l\cdot b\cdot B^2}{I_x}$

The intro video up top and the following PDF cover the
derivation of the final transfer function after accepting the
simplifications above.

PDF from the notes reviewed in the intro
video

simple_model

https://www.mtwallets.com/wp-content/uploads/2018/09/simple_model.pdf

Conclusion
This post required more than I expected to rationalize
ignoring the, ‘C’ term in the propeller speed equation! I’m
glad to have wrestled with it, because my resulting adjustment
to the ‘A’ term now appears more realistic than the expression
in my reference paper.

Getting comfortable with simplifications to the propeller
speed differential equation was the biggest leap required to
simplify our model. Now we have a transfer function, we can
design a controller around it. We will dig into this next
time!

